Paint and Coating Failure Analysis

CHALLENGE: A national steel company that supplies coated product to the building industry received multiple complaints that the 20 year warranted coated product they supplied showed severe dirt staining once put into service on commercial and industrial buildings.

ACTION: Chemical Dynamics as an expert paint consultant in paint failure analysis was called upon to inspect several representative building sites where samples were taken, tested and paint and coating failure analysis were conducted.

RESULT: Chemical Dynamics was able to demonstrate that the unexposed coating rapidly degraded when exposed to accelerated weathering resulting in increased susceptibility to dirt staining and loss of hardness. As a result of our analysis and testing the paint company accepted responsibility for the failures saving our client several hundred thousand dollars in claims.

Understanding Corrosion Inhibitive Pigments

The annual cost of steel corrosion is estimated to be over $400 billion in the United States and $2 trillion globally. Corrosion is a process where the metal can be degraded by electrochemical and/or chemical processes. This article will discuss the use of lead- and chrome-free corrosion inhibitive pigments in coatings where corrosion is primarily from electrochemical processes. Accordingly, the correct use of corrosion inhibitive pigments can be of enormous economic value.

Ron Lewarchik is a contributing author to UL Prospector and publishes articles monthly. Please read on for his expert findings on “Understanding Corrosion Inhibitive Pigments”:

Metals desire to be in their most thermodynamically stable state, which, in simplified terms, is the naturally occurring state of matter in its lowest energy state. Metals ordinarily exist naturally as oxides (e.g. iron oxide, aluminum oxide, zinc oxide, because oxides represent their lowest energy state. Corrosion is an electrochemical deterioration of a metal due to the reaction with its environment to transform the metal into its lowest energy state. Oxidation occurs at the anode (positive electrode) and reduction occurs at the cathode (negative electrode). Corrosion is normally accelerated by the presence of water, oxygen and salts (particularly of strong acids).

Click here to read on for the full article at UL Prospector